**What is CLL?**

CLL is a 2x2 method where you make a layer, and then orient and permute the last layer all at once.

(It's like getting a PLL skip every solve)

*It all looks the same! What do I do!?*

This is a question asked quite often, and drove me crazy trying to figure it out on my own. So, if you don't already know how to recognize CLL cases, I suggest you take a look at My Tutorial

*How fast can I get with CLL?*

You can get sub 3 fairly easy.

**Your website sucks for printing! Do you have a PDF? **

Why yes, yes I do. Thanks to Andy Klise, you can download it here

**Why are there so many options for algs?**

Something that is useful at the highest level of 2x2 is knowing multiple algs to skip pre AUF or post AUF. I have various algs to skip both of those as it can come in very handy. The top alg for each case may not be the best case for you. Make sure to look at the options and figure out which one works for you.

**Credit:**

Many algs on my website have been found by myself and probably every other single world class 2x2 solver. Not every single alg was discovered by me. Thanks to all who continue to find amazing algs! :)

**Sune Cases**

R U R' U R U2 R'

(U') R' U2 R U R' U R

(U') R' F R2 F' R U2 R' U' R2

(U') R' F R2 F' U' R' U' R2 U R'

F R' F' R U2 R U2 R'

R U' R' F L' U' L

R2 U R' U' R' F R F' R'

(U2) R U' R U' R' U R' U' y R U' R'

L' U2 L U2 L F' L' F

**Antisune Cases**

R' U' R U' R' U2 R

(U) R U2 R' U' R U' R'

(U2) L' U' L U' L' U2 L

(U2) R' U R U' R2' F R F' R U R' U' R

(U') R' U' R U' R' U R' F R F' U R

R U2 R' F R' F' R U' R U' R'

(U2) F' L F L' U2 L' U2 L

(U2) R' F R F' R U R'

R' U L U' R U L'

(U2) R' F2 R F' R' F2 R U' R' F R F'

R2 F R U2 R U' R' U2 F' R

(U2) R U2 R' U2 R' F R F'

**Pi Cases**

F R U R' U' R U R' U' F'

(U') F' R U2 R' U2 R' F2 R F'

R' U R2 U' R2 U' R2 U R'

R U' R2 U R2 U R2 U' R

(U2) F U R U' R' U R U' R' F'

(U') R' U' R' F R F' R U' R' U2 R

R2 U R' U' F R F' R U' R2

R U' R' F R' F R U R' F R

(U2) R' F R F' R U' R' U' R U' R'

(U') R U' R U' R' U R' F R2 F'

(U) F R2 U' R2 U R2 U R2 F'

(U') R' F R U F U' R U R' U' F'

R U2 R' U' R U R' U2 R' F R F'

(U) F' L F L' U2 L' U L U' L' U2 L

R' F2 R F' U2 R U' R' U' F

(U2) L' U2 L U L' U' L U2 L F' L' F

(U) F R' F' R U2 R U' R' U R U2 R'

**U Cases**

F R U R' U' F'

(U2) F U R U' R' F'

(U) R U' R' F' L F' L' F2 U' R U R'

(U') R U R2' U' R U2 R' U2' R U' R

(U') R2 F2 R U R' F U' R U R2

(U2) R U' R U' R U' R' U R' U R'

(U') F R U R' U2 F' R U' R' F

(U2) x R U R U' B2 R' U R' U' R x'

z' U2 R' U' R2 U' R' U' R U' R' U'

(U) x R U' R U' R' U L' U' L

F R' F' R U' R U' R' U2 R U' R'

(U) R U' R2 F R F' R U R' U' R U R'

(U') R U2 R' U R' F2 R F' R' F2 R

(U) R' U R' F R F' R U2 R' U R

(U) R F' U' R' U' R2 U R' U' R' F R

R2' U L' U2 R U' R' U2 L'

**L Cases**

(U) F' R U R' U' R' F R

F R U' R' U' R U R' F'

F R' F' R U R U' R'

(U2) R' F2 R F' R' F2 R2 U' R'

R U2 R2' F R F' R U2' R'

(U) R' U R' U2 R U' R' U R U' R2

(U') R U' R' U R U' R' F R' F' R2 U R'

(U) x' R' U2 R' U' R U2 R' F R2

R U2 R' U' y' R2 U' R' U R2

(U') R' F' R U R' U' R' F R2 U' R' U2 R

R' U' R U2 R' F R' F' R U' R

R U2 R' F' R U2 R' U R' F2 R

(U) L' U2 L U y' R2 U R U' R2'

**T Cases**

R U R' U' R' F R F'

F R F' R U R' U' R'

(U2) L' U' L U L F' L' F

F R U' R' U R U R' F'

(U) F U' R U2 R' U' F2 R U R'

(U') R' U R' U2 R U2 R' U R2 U' R'

(U2) R' U R' F U' R U F2 R2

R U R' U R U2 R2 F' R U' R' F2 R

(U2) R U' R' U F2 L F L' F R U R'

F R F' R U R' U R' U' R U' R'

(U') F R U R' U' R U' R' U' R U R' F'

(U2) R U R' U2 R U R' U R' F R F'

(U2) R' U2 R' x U2 R U2' R' U2 R2

(U) R' U R U2 R2 F R F' R

(U') R' F R U2 R2 F R U' R

(U') R U' R' U2 R2 x' U' R' U R'

**H Cases**

R2 U2 R U2' R2'

x' U2 R U2 R2 F2 R U2

F R U R' U' R U R' U' R U R' U'F'

(U) R2 F' U2 F2 R2 F' R2

R U R' U R U R' F R' F' R

R' F' R U2 R U2 R' F U' R U' R'

(U) R U' R' F U2 R2 F R U' R

(U) F R2 U' R2' U' R2 U R2' F'

(U') F R' F' R U' R U' R' U R' F R F'

R' U2 R y R' U R' U' R U' R